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1 Polynomial Codes

Recall that last time, we were constructing a large alphabet qudit CSS code based on the
Reed-Solomon (classical) code.

Definition 1.1. The Reed-Solomon Code over Zp = {0, . . . , p− 1} is

RSd := {val(f) : f(x) = f0 + f1x+ · · ·+ fdx
d}

where the evaluation vector val(f) is defined over nearly the entire space,

val(f) := (f(1), f(2), . . . , f(p− 1)).

Defining n = p − 1, this yielded that RSd is a [n, d + 1, n − d]p code. This is a linear code,
and there is a “nice” basis for it as val(1), val(x), . . . , val(xd), since the set of degree at most
d polynomials is spanned by these monomials.

1.1 The Dual of Reed-Solomon

It turns out the dual to the RS code is also easy.

Definition 1.2. A primitive root mod p is r ∈ Zp such that {r0, r1, . . . , rp−2} = Z
∗
p =

{1, 2, . . . , p− 1}.

Example 1.3. For example, we can observe that 2 is primitive mod 5, as

r0 ≡ 1, r1 ≡ 2, r2 ≡ 4, r3 ≡ 3, r4 ≡ 1

So instead we will henceforth reorder val(f) = (f(r0), f(r1), . . . , f(rp−2)).

Fact 1.4. The parity checks for RSd are val(xc) for 1 ≤ c ≤ (p− 2)− d. Therefore,

RS⊥d = Span{val(xc) : 1 ≤ c ≤ (p− 2)− d} = {val(g) = g1x
1 + g2x

2 + · · ·+ g(p−2)−dx
(p−2)−d}

Proof. We only need to check that basis elements satisfy this parity checks. Since we have
the right amount of independent parity checks, we are done. Consider for 0 ≤ i ≤ d,

val(xi) · val(xc) = (r0)i(r0)c + (r1)i(r1)c + · · ·+
= (r0)i+c + (r1)i+c + · · ·+ (rp−2)i+c
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Calling x = ri+c, we can rewrite this as

val(xi) · val(xc) =

p−2∑
j=0

xj =
xp−1 − 1

x− 1

But, we know that i+ c 6= 0 by the bounds we have placed, so x 6= 1 and also x 6= 0 because
it is a power of r. So by Fermat’s little theorem, xp−1 ≡ 1 and the denominator doesn’t
vanish, so the dot product is 0.

Corollary 1.5. RS⊥d1 ⊆ RSd2 if (p− 2)− d1 ≤ d2, e.g. when p ≤ d1 + d2 + 2.

With this condition in hand, we can define the polynomial code.

Definition 1.6. The Polynomial code is the qudit CSS code with CX = RSdX , CZ = RSdZ ,
where dX + dZ + 2 ≥ p. This is a Jn, n− (n− dX − 1)− (n− dZ − 1),min{n− dX , n− dZ}Kp
code.

It is typical to take d = dX = dZ . Then this becomes a Jn, 2d+ 2− n, n− dKp code. We will
see next lecture that the Quantum Singleton bound shows that this is exactly the maximum
distance of the code. Reparametrizing, we can write k as the size of the logical qudit space,
writing this as a Jn, k, n−k

2
+ 1Kp code. Parametrizing like this, the classical Reed-Solomon

code is [n, k, n− k + 1]p, so the distance is about half that of the classical version.

2 Bounds on Codes

We will search for what the optimal rate-distance trade-off(s) are for quantum codes. It turns
out that most bounds for quantum codes come from classical codes.

2.1 Classical Bounds

For the theorems in this secetion, let C ⊆ {0, 1}n be an [n, k, d] code. Sometimes we will
write ∆ = n

d
. Then, by the definition of unique decodability, for any two distinct codewords

c1, c2 ∈ C, the Hamming balls of radius d−1
2

must be disjoint. If they intersected, then there
would be a word of distance d−1

2
away from both; but then there would be no way to decode

such a received word. The volume of these Hamming balls are

vol

(
n,
d− 1

2

)
=

d−1
2∑
i=0

(
n

i

)
Since there are 2k elements in the code, the total volume of these disjoint balls cannot exceed
the size of the entire space.

Theorem 2.1 (Hamming Bound). Any [n, k, d] code satisfies

2kvol

(
n,
d− 1

2

)
≤ 2n
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If there is equality, the set of these Hamming balls cover the entire space.

Definition 2.2. If a code satisfies the Hamming bound with equality, it is a perfect code.

Here are some examples of perfect codes.

1. The [7, 4, 3] Hamming code.

2. The trivial code.

3. The repetition code.

4. The code with a single codeword.

5. The [23, 12, 7] Golay code.

Let’s now try to find a lower bound on a code we could possibly construct. Consider greedily
constructing a distance d code C. We loop while there exists x ∈ {0, 1}n of distance at least
d from C, and add x to C. At termination, the balls of radius d− 1 must completely cover
the space; if they didn’t, there would exist a word that is distance at least d from C, which
would contradict termination. Thus, the balls of vol(n, d− 1) must cover the space.

Theorem 2.3 (Gilbert-Varshamov (GV) Bound). There exists a [n, k, d] code C such that

|C| · vol(n, d− 1) ≥ 2n.

It turns out linear codes can attain this bound as well (by e.g. greedily choosing the columns
of the generator matrix).

2.2 Asymptotic Classical Bounds

We can write these formulae a bit nicer if our codes are “good” e.g. d = Θ(n).

Definition 2.4. The binary entropy function is

h(x) = −x log2(x)− (1− x) log2(1− x).

x

h(x)

10 1
2

1

Figure 1: A plot of the binary entropy function.
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Fact 2.5. Assume δ := `/n ≤ 1/2. Then,

1

n+ 1
2nh(δ) ≤ vol(n, `) ≤ 2nh(δ)

So this means that n(h(δ) − o(1)) ≤ log2 vol(n, `) ≤ nh(δ). Taking log of both sides of 2.1
and 2.3, we get the following estimates:

Theorem 2.6 (Asymptotic Hamming Bound). For a [n, k,∆n] code, we have

k ≤ n(1− h(∆/2)).

Theorem 2.7 (Asymptotic Gilbert-Varshamov Bound). There exists a [n, k,∆n] code with

k ≥ n(1− h(∆)).

GV Hamming???
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Figure 2: A plot comparing the two classical bounds.

An open question in coding theory is achieving an explicit, efficiently decodable binary code
that lies between these two bounds (we have such codes for larger alphabets). Another open
question is what the optimal trade-off between a code’s dimension (“rate”) and distance are.

2.3 Quantum Bounds

Let C be a nondegenerate Jn, k, dK quantum ECC and let {|x〉}x∈{0,1}k be an orthonormal

basis of C. This can correct any Pauli error P of weight at most d−1
2

. Then consider the
collection {P |x〉 : |x〉x∈{0,1}k , P correctable}. For all correctable Paulis, since there is no
degeneracy, no Pauli can be a linear combination of other Paulis. Combined with the Knill-
Laflamme conditions, we can conclude all of these vectors must be linearly independent.
Since the whole Hilbert space of states has dimension 2n, this set has size as most 2n. There

are 2k choices for |x〉, and Qvol
(
n, d−1

2

)
:=
∑ d−1

2
i=0

(
n
i

)
3i choices for P (there are 3 types of

error Paulis, and we have to choose i places to put them).
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Theorem 2.8 (Quantum Hamming Bound).

2k ·Qvol

(
n,
d− 1

2

)
≤ 2n

If d = 3, this bound looks like 2k(1 + 3n) ≤ 2n. Note that is tight for the J5, 1, 3K code. Thus
we also term this code a perfect code.
There is also a quantum Gilbert-Varshamov Bound, greedily picking stabilizers.

Theorem 2.9 (Quantum Gilbert-Varshamov Bound). There exists Jn, k, dK stabilizer code
where

2k ·Qvol(n, d− 1) ≥ 2n

There are also similar estimates on the quantum volume that gets asymptotic versions.

Fact 2.10. Assume ` ≤ n/2.

1

n+ 1
3`2nh(δ) ≤ Qvol(n, `) ≤ 3`2nh(δ)

Therefore, log2 Qvol(n, `) ≈ nh(δ) + nδ log2(3).

Theorem 2.11 (Asymptotic Quantum Hamming Bound). For a Jn, k,∆nK code, we have

k ≤ n

(
1− h(∆/2)− ∆

2
log2(3)

)
.

Theorem 2.12 (Asymptotic Gilbert-Varshamov Bound). There exists a Jn, k,∆nK code with

k ≥ n(1− h(∆)−∆ log2(3)).
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Figure 3: A plot comparing the two quantum bounds.
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